Combining elemental and immunochemical analyses to characterize diagenetic alteration patterns in ancient skeletal remains

Author:

Gatti L.,Lugli Federico,Sciutto Giorgia,Zangheri M.,Prati S.,Mirasoli M.,Silvestrini S.,Benazzi S.,Tütken T.,Douka K.,Collina C.,Boschin F.,Romandini M.,Iacumin P.,Guardigli M.,Roda A.,Mazzeo R.

Abstract

AbstractBones and teeth are biological archives, but their structure and composition are subjected to alteration overtime due to biological and chemical degradation postmortem, influenced by burial environment and conditions. Nevertheless, organic fraction preservation is mandatory for several archeometric analyses and applications. The mutual protection between biomineral and organic fractions in bones and teeth may lead to a limited diagenetic alteration, promoting a better conservation of the organic fraction. However, the correlation between elemental variations and the presence of organic materials (e.g., collagen) in the same specimen is still unclear. To fill this gap, chemiluminescent (CL) immunochemical imaging analysis has been applied for the first time for collagen localization. Then, Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry (LA–ICP–MS) and CL imaging were combined to investigate the correlation between elemental (i.e., REE, U, Sr, Ba) and collagen distribution. Teeth and bones from various archeological contexts, chronological periods, and characterized by different collagen content were analyzed. Immunochemical analysis revealed a heterogeneous distribution of collagen, especially in highly degraded samples. Subsequently, LA–ICP–MS showed a correlation between the presence of uranium and rare earth elements and areas with low amount of collagen. The innovative integration between the two methods permitted to clarify the mutual relation between elemental variation and collagen preservation overtime, thus contributing to unravel the effects of diagenetic alteration in bones and teeth.

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3