Effects of leucism on organ development and molecular mechanisms in Northern snakehead (Channa argus) beyond pigmentation alterations

Author:

Fan Wei,He Yang,Su Jian,Feng Yang,Zhuo Ting,Wang Jun,Jiao Xiaolei,Luo Yu,Wu Jun,Geng Yi

Abstract

AbstractLeucism, a widespread occurrence observed in Northern snakehead (Channa argus), bestows a striking white jade-like body coloration upon affected individuals and has gained substantial popularity in commercial breeding. While the visible manifestation of leucism in snakeheads is primarily limited to body coloration, it is crucial to explore the potential influence of leucism on organ development and elucidate the underlying molecular mechanisms. Through a comparative analysis of growth differences, our study revealed that at 150 days post-fertilization, the white variety exhibited an 8.5% higher liver index and intestinal index, but experienced a 20% and 38% decreased in spleen index and renal interstitial index, respectively, suggesting an enlarged digestive area but relatively smaller immune tissues. Nonetheless, no significant differences were observed in the intestinal flora between the two varieties, suggesting the exclusion of any exogenous impacts from symbiotic flora on the growth and development of the white variety. Importantly, transcriptome analysis demonstrated that the white variety exhibited higher expression levels of innate immune genes. Furthermore, annotation of the gene sets expressed in the liver and spleen revealed 76 and 35 genes respectively, with the white variety displaying lower expression in genes associated with “Viral protein interaction with cytokine and cytokine receptor”, “Protein processing in endoplasmic reticulum”, and “TNF signaling pathway”, while exhibiting higher expression in “Estrogen signaling pathway”. Notably, three genes, namely pcdhf 4, nlrc3 card 15-like, and a pol-like were identified in both the liver and spleen, indicating their potential involvement in altering the development and innate immunity of the white variety. This study reveals the systemic impact of leucism that extends beyond mere pigmentation alterations, highlighting the prominent characteristics of this phenotype and providing a foundation for future molecular breeding programs aimed at enhancing this variety.

Funder

Key Research and Development Program of Science and Technology of Sichuan Province

Sichuan Innovative Team Project of the National Modern Agricultural Industry Technology System

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3