Virtual monoenergetic imaging predicting Ki-67 expression in lung cancer

Author:

Dou Peipei,Zhao Hengliang,Zhong Dan,Hu Yingliang,Liu Bin,Zhang Haiyan,Cao Aihong

Abstract

AbstractThis study aimed to optimize slope and energy levels for evaluating Ki-67 expression in lung cancer using virtual monoenergetic imaging and compare the predictive efficiency of different energy spectrum slopes (λHU) for Ki-67. Forty-three patients with primary lung cancer confirmed via pathological examination were enrolled in this study. They underwent baseline arterial-phase (AP) and venous-phase (VP) energy spectrum computed tomography (CT) scanning before surgery. The CT values were 40–190 keV, with 40–140 keV indicating pulmonary lesions at AP and VP, and P < 0.05 indicating a statistically significant difference. An immunohistochemical examination was conducted, and receiver operating characteristic curves were used to analyze the prediction performance of λHU for Ki-67 expression. SPSS Statistics 22.0 (IBM Corp., NY, USA) was used for statistical analysis, and χ2, t, and Mann–Whitney U tests were used for quantitative and qualitative analyses of data. Significant differences were observed at the corresponding CT values of 40 keV (as 40-keV is considered the best for single-energy image for evaluating Ki-67 expression) and 50 keV in AP and at 40, 60, and 70 keV in VP between high- and low-Ki-67 expression groups (P < 0.05). In addition, the λHU values of three-segment energy spectrum curve in both AP and VP were quite different between two groups (P < 0.05). However, the VP data had greater predictive values for Ki-67. The areas under the curve were 0.859, 0.856, and 0.859, respectively. The 40-keV single-energy sequence was the best single-energy sequence to evaluate the expression of Ki-67 in lung cancer and to obtain λHU values using the energy spectrum curve in the VP. The CT values had better diagnostic efficiency.

Funder

Medical Science and Technology Innovation Project of the Xuzhou Municipal Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3