Application of machine learning in predicting non-alcoholic fatty liver disease using anthropometric and body composition indices

Author:

Razmpour Farkhondeh,Daryabeygi-Khotbehsara Reza,Soleimani Davood,Asgharnezhad Hamzeh,Shamsi Afshar,Bajestani Ghasem Sadeghi,Nematy Mohsen,Pour Mahdiyeh Razm,Maddison Ralph,Islam Sheikh Mohammed Shariful

Abstract

AbstractNon-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, which can progress from simple steatosis to advanced cirrhosis and hepatocellular carcinoma. Clinical diagnosis of NAFLD is crucial in the early stages of the disease. The main aim of this study was to apply machine learning (ML) methods to identify significant classifiers of NAFLD using body composition and anthropometric variables. A cross-sectional study was carried out among 513 individuals aged 13 years old or above in Iran. Anthropometric and body composition measurements were performed manually using body composition analyzer InBody 270. Hepatic steatosis and fibrosis were determined using a Fibroscan. ML methods including k-Nearest Neighbor (kNN), Support Vector Machine (SVM), Radial Basis Function (RBF) SVM, Gaussian Process (GP), Random Forest (RF), Neural Network (NN), Adaboost and Naïve Bayes were examined for model performance and to identify anthropometric and body composition predictors of fatty liver disease. RF generated the most accurate model for fatty liver (presence of any stage), steatosis stages and fibrosis stages with 82%, 52% and 57% accuracy, respectively. Abdomen circumference, waist circumference, chest circumference, trunk fat and body mass index were among the most important variables contributing to fatty liver disease. ML-based prediction of NAFLD using anthropometric and body composition data can assist clinicians in decision making. ML-based systems provide opportunities for NAFLD screening and early diagnosis, especially in population-level and remote areas.

Funder

Mashhad University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3