A ResNet attention model for classifying mosquitoes from wing-beating sounds

Author:

Wei Xutong,Hossain Md Zakir,Ahmed Khandaker Asif

Abstract

AbstractMosquitoes are vectors of numerous deadly diseases, and mosquito classification task is vital for their control programs. To ease manual labor and time-consuming classification tasks, numerous image-based machine-learning (ML) models have been developed to classify different mosquito species. Mosquito wing-beating sounds can serve as a unique classifier for mosquito classification tasks, which can be adopted easily in field applications. The current study aims to develop a deep neural network model to identify six mosquito species of three different genera, based on their wing-beating sounds. While existing models focused on raw audios, we developed a comprehensive pre-processing step to convert raw audios into more informative Mel-spectrograms, resulting in more robust and noise-free extracted features. Our model, namely ’Wing-beating Network’ or ’WbNet’, combines the state-of-art residual neural network (ResNet) model as a baseline, with self-attention mechanism and data-augmentation technique, and outperformed other existing models. The WbNet achieved the highest performance of 89.9% and 98.9% for WINGBEATS and ABUZZ data respectively. For species of Aedes and Culex genera, our model achieved 100% precision, recall and F1-scores, whereas, for Anopheles, the WbNet reached above 95%. We also compared two existing wing-beating datasets, namely WINGBEATS and ABUZZ, and found our model does not need sophisticated audio devices, hence performed better on ABUZZ audios, captured on usual mobile devices. Overall, our model has potential to serve in mosquito monitoring and prevalence studies in mosquito eradication programs, along with potential implementation in classification tasks of insect pests or other sound-based classifications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3