In-situ detoxification of schedule-I chemical warfare agents utilizing Zr(OH)4@W-ACF functional material for the development of next generation NBC protective gears

Author:

Imran Mohammad,Singh Virendra V.,Garg Prabhat,Mazumder Avik,Pandey Lokesh K.,Sharma Pushpendra K.,Acharya Jyotiranjan,Ganesan Kumaran

Abstract

AbstractChemical warfare agents (CWAs) have become a pivotal concern for the global community and spurred a wide spectrum of research for the development of new generation protective materials. Herein, a highly effective self-detoxifying filter consisting of in-situ immobilized Zirconium hydroxide [Zr(OH)4] over woven activated carbon fabric [Zr(OH)4@W-ACF] is presented for the removal of CWAs. It was prepared to harness the synergistic effect of high surface area of W-ACF, leads to high dispersion of CWAs and high phosphilicity and reactivity of [Zr(OH)4]. The synthesized materials were characterized by ATR-FTIR, EDX, SEM, TEM, XPS, TGA, and BET surface area analyzer. The kinetics of  in-situ degradation of CWAs over Zr(OH)4@W-ACF were studied and found to be following the first-order reaction kinetics. The rate constant was found to be 0.244 min−1 and 2.31 × 10−2 min−1 for sarin and soman, respectively over Zr(OH)4@W-ACF. The potential practical applicability of this work was established by fabricating Zr(OH)4@W-ACF as reactive adsorbent layer for protective suit, and found to be meeting the specified criteria in terms of air permeability, tearing strength and nerve agent permeation as per TOP-08-2-501A:2013 and IS-17380:2020. The degradation products of CWAs were analyzed with NMR and GC–MS. The combined properties of dual functional textile with reactive material are expected to open up new exciting avenues in the field of CWAs protective clothing and thus find diverse application in defence and environmental sector.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3