A photochemical-responsive nanoparticle boosts doxorubicin uptake to suppress breast cancer cell proliferation by apoptosis

Author:

Zhang Ying,Li Kaiting,Han Xiaoyu,Chen Qing,Shao Lan,Bai Dingqun

Abstract

AbstractIn the course of chemotherapy for breast cancer, doxorubicin (DOX) is one of the most commonly prescribed agents. However, it has been recognized as clinically circumscribed on account of its poor selectivity and toxic reactions to normal tissues. Fortunately, the distinct merit of photochemical-responsive nanoparticle delivery systems to enhance cellular drugs uptake through localized concentration, adequate selective and minimizing systemic toxicity has aroused substantial interest recently. In this study, we synthesized photochemical-responsive nanoparticle by incorporating DOX, curcumin (CUR), and perfluorooctyl bromide (PFOB) into poly(lactic-co-glycolic acid) (PLGA) via double emulsification (DOX–CUR–PFOB–PLGA). The synthesized composite nanoparticles, which featured good ultrasound imaging, engendered photochemical activation for drug release when given laser irradiation. Cumulative release rates for DOX were 76.34%, and for CUR were 83.64%, respectively. Also, MCF-7 cells displayed significant intracellular DOX uptake and reactive oxygen species (ROS) levels, degraded cytoskeleton, and decreased cell growth and migration capacity. At the molecular level, cellular pAKT levels decreased, which resulted in downregulated HIF-1α and BAX/BCl-2 levels, leading to Caspase-3 activation and thus induction of apoptosis. Therefore, the photochemical-responsive nanoparticles possess the potential to elicit apoptosis in MCF-7 cells via enhanced DOX uptake.

Funder

Natural Science Foundation of Chongqing

Cultivating Fund in the First Affiliated Hospital of Chongqing Medical University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3