Antimicrobial nanocomposite adsorbent based on poly(meta-phenylenediamine) for remediation of lead (II) from water medium

Author:

Kheyrabadi Fatemeh Bandavi,Zare Ehsan Nazarzadeh

Abstract

AbstractIn this study, poly(m-phenylenediamine)@ZnO (PmPDA@ZnO) nanocomposite was fabricated by in-situ chemical oxidative polymerization for the effective lead(II) removal from aqueous solutions. PmPDA@ZnO was characterized by several instrumental methods like FTIR, XRD, EDX, TGA, FESEM, TEM, zeta potential, and BET. The TEM images showed a core–shell-like structure for the PmPDA@ZnO nanocomposite. TGA results showed that the thermal stability of the PmPDA@ZnO nanocomposite was higher than the PmPDA. The maximum adsorption of lead (II) onto PmPDA@ZnO nanocomposite was obtained at pH 6, adsorbent dosage 60 mg, lead(II) ion concentration 90 mg/L, and agitation time 90 min. Langmuir and Freundlich's isotherm models were evaluated to simulate the lead(II) sorption via empirical data. Langmuir's model was in good agreement with empirical data with a maximum adsorption capacity (Qmax) of 77.51 mg/g. The kinetic data adsorption fitted best the pseudo-second-order model. The values of thermodynamic parameters of ΔS° and ΔH° were obtained 0.272 J/mol K, and 71.35 kJ/mol, respectively. The spontaneous and endothermic behavior of the adsorption process was confirmed by the negative and positive response of ΔG° and ΔH°, respectively. Moreover, the addition of coexisting cations e.g. cobalt (II), nickel (II), calcium (II), and copper (II) had no significant effect on the removal efficiency of lead(II). Adsorption–desorption studies showed that the PmPDA@ZnO nanocomposite can be remarkably regenerated and reused after three sequential runs without a significant decline in its adsorption performance. The antimicrobial activities of PmPDA@ZnO nanocomposite were evaluated against Escherichia coli and Staphylococcus aureus bacteria species. These results confirmed that the PmPDA@ZnO nanocomposite could be a good candidate for water decontamination.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3