Enhancement of optical levitation with hyperbolic metamaterials

Author:

Paralı Ufuk,Üstün Kadir,Giden İbrahim Halil

Abstract

AbstractThe tightly focused laser beam in an optical trap has become a useful tool for many recent research areas. The momentum change in the photon-stream path of incident laser beam induces radiation force that enables trapping and manipulating mesoscopic micron-sized objects. In this study, we report the first analytical demonstration of optical trapping and levitation with radiation pressure on a transparent micron-sized spherical object made of hyperbolic metamaterial (HMM). The optical radial and axial forces acting on dielectric and HMM spherical particles are calculated using ray-optics approximation, assuming an optical levitation trapping setup. We compared the net force acting on the two objects, finding that the net radiation force exerted towards HMM particle is enhanced in the axial direction: The optical force enhancement in the HMM particle is more than ~ 8 times stronger compared to the induced force on the conventional dielectric particle with the corresponding material parameters. Besides, a better performance in the radial stabilization is observed for the HMM particle in comparison with the dielectric case, at which some oscillations and unstable saturation locations for the radial stabilization is monitored for TEM00 beam incidence. Furthermore, “zero-force” paths where radial stabilization of the HMM particle exists are also obtained for both TEM00 and $$TEM_{01}^{*}$$ T E M 01 laser beam incidences. Such phenomenon does not occur for particles of only dielectric and only metal material, which can be considered as another superiority of the proposed HMM particle.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3