Mechanistic insights into TNFR1/MADD death domains in Alzheimer’s disease through conformational molecular dynamic analysis

Author:

Hassan Mubashir,Zahid Sara,Alashwal Hany,Kloczkowski Andrzej,Moustafa Ahmed A.

Abstract

AbstractProteins are tiny players involved in the activation and deactivation of multiple signaling cascades through interactions in cells. The TNFR1 and MADD interact with each other and mediate downstream protein signaling pathways which cause neuronal cell death and Alzheimer’s disease. In the current study, a molecular docking approach was employed to explore the interactive behavior of TNFR1 and MADD proteins and their role in the activation of downstream signaling pathways. The computational sequential and structural conformational results revealed that Asp400, Arg58, Arg59 were common residues of TNFR1 and MADD which are involved in the activation of downstream signaling pathways. Aspartic acid in negatively charged residues is involved in the biosynthesis of protein. However, arginine is a positively charged residue with the potential to interact with oppositely charged amino acids. Furthermore, our molecular dynamic simulation results also ensured the stability of the backbone of TNFR1 and MADD death domains (DDs) in binding interactions. This DDs interaction mediates some conformational changes in TNFR1 which leads to the activation of mediators proteins in the cellular signaling pathways. Taken together, a better understanding of TNFR1 and MADD receptors and their activated signaling cascade may help treat Alzheimer’s disease. The death domains of TNFR1 and MADD could be used as a novel pharmacological target for the treatment of Alzheimer’s disease by inhibiting the MAPK pathway.

Funder

United Arab Emirates University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3