Antibacterial and sunlight-driven photocatalytic activity of graphene oxide conjugated CeO2 nanoparticles

Author:

Fauzia ,Khan Mo Ahamad,Chaman Mohd,Azam Ameer

Abstract

AbstractThis work focuses on the structural, morphological, optical, photocatalytic, antibacterial properties of pure CeO2 nanoparticles (NPs) and graphene oxide (GO) based CeO2 nanocomposites (GO-1/CeO2, GO-5/CeO2, GO-10/CeO2, GO-15/CeO2), synthesized using the sol–gel auto-combustion and subsequent sonication method, respectively. The single-phase cubic structure of CeO2 NPs was confirmed by Rietveld refined XRD, HRTEM, FTIR and Raman spectroscopy. The average crystallite size was calculated using Debye Scherrer formula and found to increase from 20 to 25 nm for CeO2 to GO-15/CeO2 samples, respectively. The related functional groups were observed from Fourier transform infrared (FTIR) spectroscopy, consistent with the outcomes of Raman spectroscopy. The optical band gap of each sample was calculated by using a Tauc plot, which was observed to decrease from 2.8 to 1.68 eV. The valence state of Ce (Ce3+ and Ce4+) was verified using X-ray photoelectron spectroscopy (XPS) for CeO2 and GO-10/CeO2. The poisonous methylene blue (MB) dye was used to evaluate the photocatalytic activity of each sample in direct sunlight. The GO-15/CeO2 nanocomposite showed the highest photocatalytic activity with rate constant (0.01633 min–1), and it degraded the MB dye molecules by 100% within 120 min. The high photocatalytic activity of this material for degrading MB dye establishes it as an outstanding candidate for wastewater treatment. Further, these nanocomposites also demonstrated excellent antimicrobial activity against Pseudomonas aeruginosa PAO1.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3