MnEdgeNet for accurate decomposition of mixed oxidation states for Mn XAS and EELS L2,3 edges without reference and calibration

Author:

Ji Zhengran,Hu Mike,Xin Huolin L.

Abstract

AbstractAccurate decomposition of the mixed Mn oxidation states is highly important for characterizing the electronic structures, charge transfer and redox centers for electronic, and electrocatalytic and energy storage materials that contain Mn. Electron energy loss spectroscopy (EELS) and soft X-ray absorption spectroscopy (XAS) measurements of the Mn L2,3 edges are widely used for this purpose. To date, although the measurements of the Mn L2,3 edges are straightforward given the sample is prepared properly, an accurate decomposition of the mix valence states of Mn remains non-trivial. For both EELS and XAS, 2+, 3+, and 4+ reference spectra need to be taken on the same instrument/beamline and preferably in the same experimental session because the instrumental resolution and the energy axis offset could vary from one session to another. To circumvent this hurdle, in this study, we adopted a deep learning approach and developed a calibration-free and reference-free method to decompose the oxidation state of Mn L2,3 edges for both EELS and XAS. A deep learning regression model is trained to accurately predict the composition of the mix valence state of Mn. To synthesize physics-informed and ground-truth labeled training datasets, we created a forward model that takes into account plural scattering, instrumentation broadening, noise, and energy axis offset. With that, we created a 1.2 million-spectrum database with 1-by-3 oxidation state composition ground truth vectors. The library includes a sufficient variety of data including both EELS and XAS spectra. By training on this large database, our convolutional neural network achieves 85% accuracy on the validation dataset. We tested the model and found it is robust against noise (down to PSNR of 10) and plural scattering (up to t/λ = 1). We further validated the model against spectral data that were not used in training. In particular, the model shows high accuracy and high sensitivity for the decomposition of Mn3O4, MnO, Mn2O3, and MnO2. The accurate decomposition of Mn3O4 experimental data shows the model is quantitatively correct and can be deployed for real experimental data. Our model will not only be a valuable tool to researchers and material scientists but also can assist experienced electron microscopists and synchrotron scientists in the automated analysis of Mn L edge data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3