Random lasing and replica symmetry breaking in GeO2-PbO-MgO glass–ceramics doped with neodymium

Author:

Câmara Josivanir G.,da Silva Davinson M.,Kassab Luciana R. P.,Silva-Neto Manoel L.,Palacios Guillermo,de Araújo Cid B.

Abstract

AbstractWe investigated the random lasing process and Replica Symmetry Breaking (RSB) phenomenon in neodymium ions (Nd3+) doped lead-germanate glass–ceramics (GCs) containing MgO. Glass samples were fabricated by conventional melt-quenching technique and the GCs were obtained by carefully devitrifying the parent glasses at 830 °C for different time intervals. The partial crystallization of the parent glasses was verified by X-ray diffraction. Photoluminescence (PL) enhancement of $$\approx$$ 500% relative to the parent glasses was observed for samples with a higher crystallinity degree (annealed during 5 h). Powders with grains having average size of 2 µm were prepared by griding the GCs samples. The Random Laser (RL) was excited at 808 nm, in resonance with the Nd3+ transition 4I9/2 → {4F5/2, 2H9/2}, and emitted at 1068 nm (transition 4F3/2 → 4I11/2). The RL performance was clearly enhanced for the sample with the highest crystallinity degree whose energy fluence excitation threshold (EFEth) was 0.25 mJ/mm2. The enhanced performance is attributed to the residence-time growth of photons inside the sample and the higher quantum efficiency of Nd3+ incorporated within the microcrystals, where radiative losses are reduced. Moreover, the phenomenon of Replica Symmetry Breaking (RSB), characteristic of a photonic-phase-transition, was detected by measuring the intensity fluctuations of the RL emission. The Parisi overlap parameter was determined for all samples, for excitation below and above the EFEth. This is the first time, for the best of the authors knowledge, that RL emission and RSB are reported for a glass–ceramic system.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Entropy Oxides: A New Frontier in Photocatalytic CO2 Hydrogenation;ACS Applied Materials & Interfaces;2024-05-31

2. Random Laser Emission in Nd3+ Doped Tellurite Glass;2023 International Conference on Optical MEMS and Nanophotonics (OMN) and SBFoton International Optics and Photonics Conference (SBFoton IOPC);2023-07-30

3. Structure and photoluminescence properties of PbO–Bi2O3–Ga2O3 glass-ceramics containing silver nanoparticles, free lead and bismuth ions;Optical Materials;2023-07

4. Random laser emission from neodymium doped alumina lead–germanate glass powder;Applied Optics;2023-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3