Numerical simulation and theoretical study on the impact of wind-sand flow of high-speed trains in long tunnel space

Author:

Li Shiqun,Dong SihuiORCID,Li Yonghua,Zhou Liping

Abstract

AbstractWhen high-speed trains (HST) run in enclosed spaces such as long tunnels, the thermal accumulation of their suspension devices is continuous and cannot be effectively dissipated. In addition, previous experiments or simulations for the heat dissipation of HST in tunnel spaces did not consider the impact of sand. To clarify the impact of HWS-LT on the heat accumulation of HST equipment cabin, this study used the CFD method to numerically simulate the impact of different wind-sand flow concentrations or no-sand wind on the cooling of equipment in the long tunnel space. Firstly, the sand particles in the wind-sand flow gather at the tunnel entrance and enter the equipment cabin with the train as it enters the tunnel. This boundary condition is more in line with actual engineering situations. Secondly, both flows show asymmetric intrusion into the cabin due to the asymmetrical tunnel arrangement, but the sand particles in the wind-sand flow are affected by the vortices and tunnel walls, resulting in more asymmetric flow and some particles being trapped in the grids or filters, leading to outflow ρQ < inflow ρQ. Under the wind-sand flow condition, the temperature of some equipment surfaces shows more significant increases than under the no-sand wind. Finally, contrary to popular perception, the wind-sand flow carrying sand particles can dissipate heat more effectively than no-sand wind, and the higher the volume fraction φ within a certain concentration range, the better the heat dissipation effect. This is because the wind-sand flow has a higher specific heat capacity, which can remove some heat from the contact point between the sand particles and the equipment wall upon contact. The higher sand particle concentration increases the contact frequency and contact area between the sand particles and the equipment wall, and the heat transfer pathway and heat dissipation efficiency are improved.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3