AI for interpreting screening mammograms: implications for missed cancer in double reading practices and challenging-to-locate lesions

Author:

Jiang Zhengqiang,Gandomkar Ziba,Trieu Phuong Dung,Taba Seyedamir Tavakoli,Barron Melissa L.,Lewis Sarah J.

Abstract

AbstractAlthough the value of adding AI as a surrogate second reader in various scenarios has been investigated, it is unknown whether implementing an AI tool within double reading practice would capture additional subtle cancers missed by both radiologists who independently assessed the mammograms. This paper assesses the effectiveness of two state-of-the-art Artificial Intelligence (AI) models in detecting retrospectively-identified missed cancers within a screening program employing double reading practices. The study also explores the agreement between AI and radiologists in locating the lesions, considering various levels of concordance among the radiologists in locating the lesions. The Globally-aware Multiple Instance Classifier (GMIC) and Global–Local Activation Maps (GLAM) models were fine-tuned for our dataset. We evaluated the sensitivity of both models on missed cancers retrospectively identified by a panel of three radiologists who reviewed prior examinations of 729 cancer cases detected in a screening program with double reading practice. Two of these experts annotated the lesions, and based on their concordance levels, cases were categorized as 'almost perfect,' 'substantial,' 'moderate,' and 'poor.' We employed Similarity or Histogram Intersection (SIM) and Kullback–Leibler Divergence (KLD) metrics to compare saliency maps of malignant cases from the AI model with annotations from radiologists in each category. In total, 24.82% of cancers were labeled as “missed.” The performance of GMIC and GLAM on the missed cancer cases was 82.98% and 79.79%, respectively, while for the true screen-detected cancers, the performances were 89.54% and 87.25%, respectively (p-values for the difference in sensitivity < 0.05). As anticipated, SIM and KLD from saliency maps were best in ‘almost perfect,’ followed by ‘substantial,’ ‘moderate,’ and ‘poor.’ Both GMIC and GLAM (p-values < 0.05) exhibited greater sensitivity at higher concordance. Even in a screening program with independent double reading, adding AI could potentially identify missed cancers. However, the challenging-to-locate lesions for radiologists impose a similar challenge for AI.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3