A prognostic model of non small cell lung cancer based on TCGA and ImmPort databases

Author:

Yang Dongliang,Ma Xiaobin,Song Peng

Abstract

AbstractBioinformatics methods are used to construct an immune gene prognosis assessment model for patients with non-small cell lung cancer (NSCLC), and to screen biomarkers that affect the occurrence and prognosis of NSCLC. The transcriptomic data and clinicopathological data of NSCLC and cancer-adjacent normal tissues were downloaded from the Cancer Genome Atlas (TCGA) database and the immune-related genes were obtained from the IMMPORT database (http://www.immport.org/); then, the differentially expressed immune genes were screened out. Based on these genes, an immune gene prognosis model was constructed. The Cox proportional hazards regression model was used for univariate and multivariate analyses. Further, the correlations among the risk score, clinicopathological characteristics, tumor microenvironment, and the prognosis of NSCLC were analyzed. A total of 193 differentially expressed immune genes related to NSCLC were screened based on the "wilcox.test" in R language, and Cox single factor analysis showed that 19 differentially expressed immune genes were associated with the prognosis of NSCLC (P < 0.05). After including 19 differentially expressed immune genes with P < 0.05 into the Cox multivariate analysis, an immune gene prognosis model of NSCLC was constructed (it included 13 differentially expressed immune genes). Based on the risk score, the samples were divided into the high-risk and low-risk groups. The Kaplan–Meier survival curve results showed that the 5-year overall survival rate in the high-risk group was 32.4%, and the 5-year overall survival rate in the low-risk group was 53.7%. The receiver operating characteristic model curve confirmed that the prediction model had a certain accuracy (AUC = 0.673). After incorporating multiple variables into the Cox regression analysis, the results showed that the immune gene prognostic risk score was an independent predictor of the prognosis of NSCLC patients. There was a certain correlation between the risk score and degree of neutrophil infiltration in the tumor microenvironment. The NSCLC immune gene prognosis assessment model was constructed based on bioinformatics methods, and it can be used to calculate the prognostic risk score of NSCLC patients. Further, this model is expected to provide help for clinical judgment of the prognosis of NSCLC patients.

Funder

Natural Science Foundation of Shandong Province, China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3