Artificial intelligence framework for heart disease classification from audio signals

Author:

Abbas Sidra,Ojo Stephen,Al Hejaili Abdullah,Sampedro Gabriel Avelino,Almadhor Ahmad,Zaidi Monji Mohamed,Kryvinska Natalia

Abstract

AbstractAs cardiovascular disorders are prevalent, there is a growing demand for reliable and precise diagnostic methods within this domain. Audio signal-based heart disease detection is a promising area of research that leverages sound signals generated by the heart to identify and diagnose cardiovascular disorders. Machine learning (ML) and deep learning (DL) techniques are pivotal in classifying and identifying heart disease from audio signals. This study investigates ML and DL techniques to detect heart disease by analyzing noisy sound signals. This study employed two subsets of datasets from the PASCAL CHALLENGE having real heart audios. The research process and visually depict signals using spectrograms and Mel-Frequency Cepstral Coefficients (MFCCs). We employ data augmentation to improve the model’s performance by introducing synthetic noise to the heart sound signals. In addition, a feature ensembler is developed to integrate various audio feature extraction techniques. Several machine learning and deep learning classifiers are utilized for heart disease detection. Among the numerous models studied and previous study findings, the multilayer perceptron model performed best, with an accuracy rate of 95.65%. This study demonstrates the potential of this methodology in accurately detecting heart disease from sound signals. These findings present promising opportunities for enhancing medical diagnosis and patient care.

Publisher

Springer Science and Business Media LLC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3