Optogenetic restoration of high sensitivity vision with bReaChES, a red-shifted channelrhodopsin

Author:

Too Lay Khoon,Shen Weiyong,Protti Dario A.,Sawatari Atomu,A. Black Dylan,Leamey Catherine A.,Y. Huang Jin,Lee So-Ra,E. Mathai Ashish,Lisowski Leszek,Y. Lin John,C. Gillies Mark,Simunovic Matthew P.

Abstract

AbstractThe common final pathway to blindness in many forms of retinal degeneration is the death of the light-sensitive primary retinal neurons. However, the normally light-insensitive second- and third-order neurons persist optogenetic gene therapy aims to restore sight by rendering such neurons light-sensitive. Here, we investigate whether bReaChES, a newly described high sensitivity Type I opsin with peak sensitivity to long-wavelength visible light, can restore vision in a murine model of severe early-onset retinal degeneration. Intravitreal injection of an adeno-associated viral vector carrying the sequence for bReaChES downstream of the calcium calmodulin kinase IIα promoter resulted in sustained retinal expression of bReaChES. Retinal ganglion cells (RGCs) expressing bReaChES generated action potentials at light levels consistent with bright indoor lighting (from 13.6 log photons cm−2 s−1). They could also detect flicker at up to 50 Hz, which approaches the upper temporal limit of human photopic vision. Topological response maps of bReaChES-expressing RGCs suggest that optogenetically activated RGCs may demonstrate similar topographical responses to RGCs stimulated by photoreceptor activation. Furthermore, treated dystrophic mice displayed restored cortical neuronal activity in response to light and rescued behavioral responses to a looming stimulus that simulated an aerial predator. Finally, human surgical retinal explants exposed to the bReaChES treatment vector demonstrated transduction. Together, these findings suggest that intravitreal gene therapy to deliver bReaChES to the retina may restore vision in human retinal degeneration in vivo at ecologically relevant light levels with spectral and temporal response characteristics approaching those of normal human photopic vision.

Funder

National Health and Medical Research Council

Macular Disease Foundation Australia

Foundation Fighting Blindness

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3