Downregulation of SODD mediates carnosol-induced reduction in cell proliferation in esophageal adenocarcinoma cells

Author:

Li Aihua,Cao Weibiao

Abstract

AbstractEsophageal adenocarcinoma carries a poor prognosis associated with a 5-year survival rate of 12.5–20%. Therefore, a new therapeutic modality is needed for this lethal tumor. Carnosol is a phenolic diterpene purified from the herbs such as rosemary and Mountain desert sage and has been shown to have anticancer activities in multiple cancers. In this study we examined the effect of carnosol on cell proliferation in esophageal adenocarcinoma cells. We found that carnosol dose-dependently decreased cell proliferation in FLO-1 esophageal adenocarcinoma cells and significantly increased caspase-3 protein, indicating that carnosol decreases cell proliferation and increases cell apoptosis in FLO-1 cells. Carnosol significantly increased H2O2 production and N-acetyl cysteine, a reactive oxygen species (ROS) scavenger, significantly inhibited carnosol-induced decrease in cell proliferation, indicating that ROS may mediate carnosol-induced decrease in cell proliferation. Carnosol-induced decrease in cell proliferation was partially reversed by NADPH oxidase inhibitor apocynin, suggesting that NADPH oxidases may be partially involved in carnosol’s effect. In addition, carnosol significantly downregulated SODD protein and mRNA expression and knockdown of SODD significantly inhibited the carnosol-induced reduction in cell proliferation, suggesting that downregulation of SODD may contribute to carnosol-induced reduction in cell proliferation. We conclude that carnosol dose-dependently decreased cell proliferation and significantly increased caspase-3 protein. Carnosol’s effect may be through the overproduction of ROS and the downregulation of SODD. Carnosol might be useful for the treatment of esophageal adenocarcinoma.

Funder

Chongqing Scientific Research Institute Performance Incentive Guidance Special Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3