Body composition assessment of people with overweight/obesity with a simplified magnetic resonance imaging method

Author:

Pereira Yoann,Mendelson Monique,Marillier Mathieu,Ghaith Abdallah,Verges Samuel,Borowik Anna,Vuillerme Nicolas,Estève François,Flore Patrice

Abstract

AbstractTo develop a simplified magnetic resonance imaging method (MRI) to assess total adipose tissue (AT) and adipose tissue free mass (ATFM) from three single MRI slices in people with overweight/obesity in order to implement body composition follow-up in a clinical research setting. Body composition of 310 participants (70 women and 240 men, age: 50.8 ± 10.6 years, BMI: 31.3 ± 5.6 kg.m−2) was assessed with 3 single slices (T6-T7, L4-L5 and at mid-thigh) MRI. Multiple regression analysis was used to develop equations predicting AT and ATFM from these three single slices. Then we implemented a longitudinal phase consisting in a 2-month exercise training program during which we tested the sensitivity of these equations in a subgroup of participants with overweight/obesity (n = 79) by comparing the exercise-induced variations between predicted and measured AT and ATFM. The following equations: total AT = − 12.74105 + (0.02919 × age) + (4.27634 × sex (M = 0, F = 1)) + (0.22008 × weight) + (26.92234 × AT T6-T7) + (23.70142 × AT L4-L5) + (37.94739 × AT mid-thigh) and total ATFM = − 33.10721 + (− 0.02363 × age) + (− 3.58052 × sex (M = 0, F = 1)) + (30.02252 × height) + (0.08549 × weight) + (11.36859 × ATFM T6-T7) + (27.82244 × ATFM L4-L5) + (58.62648 × ATFM mid-thigh) showed an excellent prediction (adjusted R2 = 97.2% and R2 = 92.5%; CCC = 0.986 and 0.962, respectively). There was no significant difference between predicted and measured methods regarding the AT variations (− 0.07 ± 2.02 kg, p = 0.70) and the ATFM variations (0.16 ± 2.41 kg, p = 0.49) induced by 2-months of exercise training. This simplified method allows a fully accurate assessment of the body composition of people with obesity in less than 20 min (10 min for images acquisition and analysis, respectively), useful for a follow-up.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3