Injury and death to armored passenger-vehicle occupants and ground personnel from explosive shock waves

Author:

Viano David C.

Abstract

AbstractThis study evaluated the risks for injury and death to occupants from blast waves to the side and underbody of an armored passenger-vehicle and to ground personnel from free-field blast waves. The Kingery-Bulmash empirical relationships for explosive shock waves were augmented by the Swisdak empirical relations for stand-off distances up to Z = 39.8 m/kg1/3 to tabulate shock-wave characteristics using the Friedlander wave-shape. A 15 kg, hemispherical explosion was analyzed in detail for the shock wave velocity and compression of air behind the wave front. An armored SUV was analyzed with Z = 1.6 m/kg1/3 (4 m) standoff distance from pressure loading on the near-side, far-side and underbody. The rigid body displacement was 0.36 m and 7.8° yaw for a side loading. When a segment of the occupant compartment accelerates inward, there are risks for injury from the intrusion. Energy is transferred to the occupant by deformation of their body (Ed) and by velocity increasing the kinetic energy of the body region (Ek). Body deformation injures an occupant by exceeding the tolerable compression (crush mechanism) or exceeding the rate-dependent tolerance, which is defined by the rate times the extent of compression (viscous mechanism). The risk for injury and death to ground personnel was analyzed for free-field blast waves by stand-off distance and TNT weight. A 15 kg charge posed a 99% risk of death at 3.9 m, 50% risk at 5.2 m, 1% risk at 7.8 m and injury threshold at 8.2 m. A 100 kg charge posed a 99% risk of death at 8.5 m, 50% risk at 11.6 m, 1% risk at 17.3 m and injury threshold at 18.0 m. The study describes the steps to analyze blast loading of an armored passenger-vehicle for risks of occupant injury. It describes the steps to analyze injury risks to ground personnel from blast wave pressure.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference75 articles.

1. Wang, X. et al. Incidence, casualties and risk characteristics of civilian explosion blast injury in China: 2000–2017 data from the state administration of work safety. Mil. Med. Res. 7(1), 29 (2020).

2. Magnus, D., Khan, M. A. & Proud, W. G. Epidemiology of civilian blast injuries inflicted by terrorist bombings from 1970–2016. Def. Technol. 14, 469–476 (2018).

3. Ritenour, A. E. et al. Incidence of primary blast injury in US military overseas contingency operations: A retrospective study. Ann. Surg. 251(6), 1140–1144 (2010).

4. Champion, H. R., Bellamy, R. F., Roberts, P. & Leppaniemi, A. A profile of combat injury. J. Trauma 54, S13–S19 (2003).

5. NATO. Stanag 4569 (Edition 2) – Protection levels for occupants of armoured vehicles. NATO standardization agency, NSA/1384, LMC/4569, 18 December 2012.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3