Radiation reaction as an energy enhancement mechanism for laser-irradiated electrons in a strong plasma magnetic field

Author:

Gong Z.,Mackenroth F.ORCID,Yan X. Q.,Arefiev A. V.ORCID

Abstract

AbstractConventionally, friction is understood as a mechanism depleting a physical system of energy and as an unavoidable feature of any realistic device involving moving parts. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuitively results in a highly directional energy flow. This peculiar behavior is caused by radiation friction, i.e., the energy loss of an accelerated charge due to the emission of radiation. We demonstrate analytically and numerically how radiation friction can dramatically enhance the energy gain by electrons from a laser pulse in a strong magnetic field that naturally arises in dense laser-irradiated plasma. We find the directional energy boost to be due to the transverse electron momentum being reduced through friction whence the driving laser can accelerate the electron more efficiently. In the considered example, the energy of the laser-accelerated electrons is enhanced by orders of magnitude, which then leads to highly directional emission of gamma-rays induced by the plasma magnetic field.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3