Author:
Srikuea Ratchakrit,Hirunsai Muthita
Abstract
AbstractFibroblasts play a pivotal role in fibrogenesis after skeletal muscle injury. Excess fibrous formation can disrupt contractile functions and delay functional recovery. Although vitamin D receptor (VDR) is expressed explicitly in regenerating muscle compared with uninjured muscle, how calcitriol [1α,25(OH)2D3] directly regulates skeletal muscle primary fibroblast proliferation, the transition to myofibroblasts, and Smad signalling-associated fibrogenesis is currently unknown. Herein, the effects of calcitriol on cultured skeletal muscle primary fibroblasts of male C57BL/6 mice (aged 1 month old) were investigated. The percentage of BrdU+ nuclei in primary fibroblasts was significantly decreased after calcitriol treatment; however, the antiproliferative effect of calcitriol was diminished after TGF-β1 stimulation to induce fibroblast to myofibroblast transition. This suppressive effect was associated with significantly decreased VDR expression in TGF-β1-treated cells. In addition, Vdr siRNA transfection abolished the effects of calcitriol on the suppression of α-SMA expression and Smad2/3 signalling in myofibroblasts, supporting that its antifibrogenic effect requires VDR activation. Compared with calcitriol, the antifibrotic agent suramin could inhibit fibroblast/myofibroblast proliferation and suppress the expression of TCF-4, which regulates fibrogenic determination. Collectively, these findings suggest that profibrotic stimulation and VDR-dependent activation could modulate the effects of calcitriol on skeletal muscle fibroblast proliferation and fibrogenesis processes. Therefore, TGF-β1 and VDR expression levels are crucial determinants for the antifibrogenic effect of calcitriol on skeletal muscle after injury.
Funder
Mahidol University under the New Discovery and Frontier Research Grant
CIF and CNI grant, Faculty of Science, Mahidol University
Faculty of Science, Mahidol University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献