Network pharmacology and experimental verification of the potential mechanism of Er-Xian decoction in aplastic anemia

Author:

Ye Mei,Liu Guangxian,Yang Yujun,Yang Hongyu,Ren Juan,Chen Wenfei,Gao Zeli

Abstract

AbstractTo investigate the potential mechanism of Er-Xian decoction (EXD) in treating aplastic anemia (AA), the active components of EXD were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the targets of the components were predicted by the Swiss Target Prediction database. AA targets were collected from the GeneCards, OMIM, DisGeNET, PharmGKB, DrugBank, and TTD databases, the intersection of AA targets and EXD targets was calculated, and an herb-component-target network was constructed by Cytoscape 3.7.2 software. The STRING database was used for protein‒protein interaction (PPI) analysis, and Cytoscape 3.7.2 software was used to construct a PPI network and perform topology analysis. The core targets were imported into the DAVID database for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The molecular docking software AutoDock was used to measure the affinity between active components and key targets. Finally, we established a mouse model of AA and verified the key targets and signaling pathways of EXD by RT‒PCR, ELISA and Western blot analysis. A total of 53 active components were screened from EXD, 2516 AA-related targets were collected, and 195 common targets were obtained. An herb-component-target network and a PPI network were successfully constructed, and 36 core targets were selected from the PPI network. The main active components of EXD include luteolin, kaempferol, berberine, etc., and key targets include PIK3CA, AKT1, STAT3, etc. GO functional enrichment analysis showed that cell components, molecular functions and biological processes with significant correlations were macromolecular complexes, protein serine/threonine/tyrosine kinase activity and protein phosphorylation, respectively. KEGG pathway analysis showed that the pathways with significant correlations included the PI3K-Akt signaling pathway and JAK-STAT signaling pathway. Molecular docking results showed that the tested key targets had good affinity for the corresponding active components. In AA mice, we found that EXD significantly increased white blood cell count, red blood cell count, platelet count and hemoglobin levels, increased mRNA levels of PIK3CA, PIK3CD, AKT1, JAK2, STAT3 and MAPK1, and promoted phosphorylation of PI3K, AKT, ERK1/2 and STAT3. In summary, EXD acts on PI3K, AKT, STAT3 and other targets through berberine, luteolin, quercetin and other components to regulate the PI3K-Akt pathway, JAK-STAT pathway and other pathways, thus exerting its therapeutic effect on AA. This study explained the Chinese medicine theory of treating AA with EXD by tonifying kidney-yang and provides a scientific basis for the use of EXD in treating AA.

Funder

Sichuan Provincial Administration of Traditional Chinese Medicine

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3