Involvement of oxidative stress in orofacial mechanical pain hypersensitivity following neonatal maternal separation in rats

Author:

Soma Chihiro,Hitomi Suzuro,Oshima Eri,Hayashi Yoshinori,Soma Kumi,Shibuta Ikuko,Tsuboi Yoshiyuki,Shirakawa Tetsuo,Kikuiri Takashi,Iwata Koichi,Shinoda Masamichi

Abstract

AbstractPatients with persistent pain have sometimes history of physical abuse or neglect during infancy. However, the pathogenic mechanisms underlying orofacial pain hypersensitivity associated with early-life stress remain unclear. The present study focused on oxidative stress and investigated its role in pain hypersensitivity in adulthood following early-life stress. To establish an early-life stress model, neonatal pups were separated with their mother in isolated cages for 2 weeks. The mechanical head-withdrawal threshold (MHWT) in the whisker pad skin of rats received maternal separation (MS) was lower than that of non-MS rats at postnatal week 7. In MS rats, the expression of 8-hydroxy-deoxyguanosine, a marker of DNA oxidative damage, was enhanced, and plasma antioxidant capacity, but not mitochondrial complex I activity, decreased compared with that in non-MS rats. Reactive oxygen species (ROS) inactivation and ROS-sensitive transient receptor potential ankyrin 1 (TRPA1) antagonism in the whisker pad skin at week 7 suppressed the decrease of MHWT. Corticosterone levels on day 14 increased in MS rats. Corticosterone receptor antagonism during MS periods suppressed the reduction in antioxidant capacity and MHWT. The findings suggest that early-life stress potentially induces orofacial mechanical pain hypersensitivity via peripheral nociceptor TRPA1 hyperactivation induced by oxidative stress in the orofacial region.

Funder

JSPS KAKENHI

Dental Research Center, Nihon University School of Dentistry

Uemura Fund, Nihon University School of Dentistry

Sato Fund, Nihon University School of Dentistry

Japan Agency for Medical Research and Development

Nihon University Multidisciplinary Research Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3