Framework, method and case study for the calculation of end of life for HWL and parameter sensitivity analysis

Author:

Xiang Rui,Liu Jing-Cai,Xu Ya,Liu Yu-Qiang,Nai Chang-xin,Dong Lu,Huang Qi-Fei

Abstract

Abstract Mass construction and operation of hazardous waste landfill infrastructure has greatly improved China’s waste management and environmental safety. However, the deterioration of engineering materials and the failure of landfill may lead to the release of untreated leachate rich in persistent toxic pollutants to the soil and shallow groundwater. Accordingly, we develop the framework and process model to predict landfill life by coupling the landfill hydrological performance model and material degradation model. We found that the decrease rate of the concentration of persistent pollutants in leachate was significantly slower than the deterioration rate of the landfill engineering materials. As a result, when the materials failed, the leachate with high concentrations of persistent pollutants continued to leak, resulting in the pollutants concentration in surrounding groundwater exceeding the acceptable concentration at around 385 a, which is the average life of a landfill. Further simulation indicated that hydrogeological conditions and the initial concentration of leachate will affect landfill lifespan. The correlation coefficients of concentration, the thickness of vadose zone and the thickness of aquifer are − 0.79, 0.99 and 0.72 respectively, so the thickness of vadose zone having the greatest impact on the life of a landfill. The results presented herein indicate hazardous waste landfill infrastructure reinvestment should be directed toward long-term monitoring and maintenance, waste second-disposal, and site restoration.

Funder

National Natural Science Foundation Project of China

Central Public-interest Scientific Institution Basal Research Fund

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3