Jewelry rock discrimination as interpretable data using laser-induced breakdown spectroscopy and a convolutional LSTM deep learning algorithm

Author:

Khalilian Pouriya,Rezaei Fatemeh,Darkhal Nazli,Karimi Parvin,Safi Ali,Palleschi Vincenzo,Melikechi Noureddine,Tavassoli Seyed Hassan

Abstract

AbstractIn this study, the deep learning algorithm of Convolutional Neural Network long short-term memory (CNN–LSTM) is used to classify various jewelry rocks such as agate, turquoise, calcites, and azure from various historical periods and styles related to Shahr-e Sokhteh. Here, the CNN–LSTM architecture includes utilizing CNN layers for the extraction of features from input data mixed with LSTMs for supporting sequence forecasting. It should be mentioned that interpretable deep learning-assisted laser induced breakdown spectroscopy helped achieve excellent performance. For the first time, this paper interprets the Convolutional LSTM effectiveness layer by layer in self-adaptively obtaining LIBS features and the quantitative data of major chemical elements in jewelry rocks. Moreover, Lasso method is applied on data as a factor for investigation of interoperability. The results demonstrated that LIBS can be essentially combined with a deep learning algorithm for the classification of different jewelry songs. The proposed methodology yielded high accuracy, confirming the effectiveness and suitability of the approach in the discrimination process.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3