Physiological changes in Rhodococcus ruber S103 immobilized on biobooms using low-cost media enhance stress tolerance and crude oil-degrading activity

Author:

Naloka Kallayanee,Jaroonrunganan Jirakit,Woratecha Naphatsakorn,Khondee Nichakorn,Nojiri Hideaki,Pinyakong OnruthaiORCID

Abstract

AbstractFor economic feasibility, sugarcane molasses (0.5%, w/v) containing K2HPO4 (0.26%, w/v) and mature coconut water, low value byproducts, were used in cultivation of Rhodococcus ruber S103 for inoculum production and immobilization, respectively. Physiological changes of S103 grown in low-cost media, including cell hydrophobicity, saturated/unsaturated ratio of cellular fatty acids and biofilm formation activity, enhanced stress tolerance and crude oil biodegradation in freshwater and even under high salinity (5%, w/v). Biobooms comprised of S103 immobilized on polyurethane foam (PUF) was achieved with high biomass content (1010 colony-forming units g−1 PUF) via a scale-up process in a 5-L modified fluidized-bed bioreactor within 3 days. In a 500-L mesocosm, natural freshwater was spiked with crude oil (72 g or 667 mg g−1 dry biobooms), and a simulated wave was applied. Biobooms could remove 100% of crude oil within only 3 days and simultaneously biodegraded 60% of the adsorbed oil after 7 days when compared to boom control with indigenous bacteria. In addition, biobooms had a long shelf-life (at least 100 days) with high biodegradation activity (85.2 ± 2.3%) after storage in 10% (w/v) skimmed milk at room temperature. This study demonstrates that the low-cost production of biobooms has potential for future commercial bioremediation.

Funder

The Second Century Fund (C2F), Chulalongkorn University

The Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3