Author:
Maughan Peter J.,Jarvis David E.,de la Cruz-Torres Eulogio,Jaggi Kate E.,Warner Heather C.,Marcheschi Ashley K.,Bertero H. Daniel,Gomez-Pando Luz,Fuentes Francisco,Mayta-Anco Mayela E.,Curti Ramiro,Rey Elodie,Tester Mark,Jellen Eric N.
Abstract
AbstractPitseed goosefoot (Chenopodium berlandieri) is a free-living North American member of an allotetraploid complex that includes the Andean pseudocereal quinoa (C. quinoa). Like quinoa, pitseed goosefoot was domesticated, possibly independently, in eastern North America (subsp. jonesianum) and Mesoamerica (subsp. nuttaliae). To test the utility of C. berlandieri as a resource for quinoa breeding, we produced the whole-genome DNA sequence of PI 433,231, a huauzontle from Puebla, México. The 1.295 Gb genome was assembled into 18 pseudomolecules and annotated using RNAseq data from multiple tissues. Alignment with the v.2.0 genome of Chilean-origin C. quinoa cv. ‘QQ74’ revealed several inversions and a 4A-6B reciprocal translocation. Despite these rearrangements, some quinoa x pitseed goosefoot crosses produce highly fertile hybrids with faithful recombination, as evidenced by a high-density SNP linkage map constructed from a Bolivian quinoa ‘Real-1’ × BYU 937 (Texas coastal pitseed goosefoot) F2 population. Recombination in that cross was comparable to a ‘Real-1’ × BYU 1101 (Argentine C. hircinum) F2 population. Furthermore, SNP-based phylogenetic and population structure analyses of 90 accessions supported the hypothesis of multiple independent domestications and descent from a common 4 × ancestor, with a likely North American Center of Origin.
Funder
National Institute of Food and Agriculture
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献