Time fractional model of electro-osmotic Brinkman-type nanofluid with heat generation and chemical reaction effects: application in cleansing of contaminated water

Author:

Alrabaiah Hussam,Bilal Muhammad,Khan Muhammad Altaf,Muhammad Taseer,Legas Endris Yimer

Abstract

AbstractDrilling fluids execute a dominant role in the extraction of oil and gas from the land and rocks. To enhance the efficiency of drilling fluid, clay nanoparticulate has been utilized. The inclusion of clay nanomaterial to drilling fluids significantly elevate their viscosity and thermal conductivity. Therefore, the present investigation is focused on the analysis of time-fractional free convective electro-osmotic flow of Brinkman-type drilling nanofluid with clay nanoparticles. The heat generation and chemical reaction characteristics and influence of the transverse magnetic field have also been taken into an account. The local mathematical model is formulated in terms of coupled PDEs along with appropriate physical conditions. The dimensional governing equations have been non-dimensionalized by using relative similarity variables to encounter the units and reduce the variables. Further, the non-dimensional local model has been artificially converted to a generalized model by utilizing the definition of time-fractional Caputo–Fabrizio derivative with the exponential kernel. The graphical results are analyzed via computational software Mathematica, to study the flow behavior against inserted parameters. From graphical analysis it has been observed qualitatively that the velocity field has been raised against the greater magnitude of electro-osmosis parameter $$Es$$ Es . Numerical table for Nusselt number is calculated from the obtained exact solutions. From the analysis 11.83% elevation in the rate of energy transition of drilling nanofluid has been reported in response of clay nanoparticles.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3