Analysis of physical and mechanical behaviors and microscopic mineral characteristics of thermally damaged granite

Author:

Peng Lei,Li Xianglong,Peng Xin,Gan Yunchuan,Wang Jianguo

Abstract

AbstractTemperature’s influence on the physical and mechanical properties of rocks is a crucial concern for the rational design of deep rock engineering structures and the assurance of their long-term stability. To systematically comprehend the impact of the evolution of mineral composition and micro characteristics on the physical and mechanical behavior of thermally damaged granite, we observed the microscopic structural defects inside the rocks with a polarizing microscope and revealed the thermal damage mechanism of granite from a microscopic perspective by combining ultrasound detection and XRD phase characteristic analysis. The results show that the physical properties of the specimens changed significantly at three characteristic temperature points: 400 °C, 800 °C, and 1000 °C. Under high temperature conditions, the diffraction intensity of all minerals in granite, except for quartz, generally decreased, and stable minerals decomposed. Albite and potash feldspar decomposed to form anorthoclase, thereby reducing the structural stability of the rock material. In addition, the peak width of various minerals decreased to varying degrees with increasing temperature. The increase in mineral volume further damaged the internal structure of the rock material while promoting the transformation from grain boundary to intergranular cracks and from intragranular cracks to transgranular cracks, ultimately forming a interconnected crack network. Thermal damage significantly reduced the longitudinal wave velocity, uniaxial compressive strength, and elastic modulus of the specimens, while the stress–strain curve relationship indicated that the specimens underwent two opposite processes of transformation from brittleness to ductility and then from ductility to brittleness. The thermal damage threshold of granite in this study was 600 °C.

Funder

National Natural Science Foundation

Major Science and Technology Projects in Yunnan Province

Yunnan Province Fundamental Research Projects General Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3