Author:
Wang Hu,Coulman Bruce,Bai Yuguang,Tarˈan Bunyamin,Biligetu Bill
Abstract
AbstractGenomic information on alfalfa adaptation to long-term grazing is useful for alfalfa genetic improvement. In this study, 14 alfalfa populations were collected from long-term grazing sites (> 25 years) across four soil zones in western Canada. Alfalfa cultivars released between 1926 and 1980 were used to compare degree of genetic variation of the 14 populations. Six agro-morphological and three nutritive value traits were evaluated from 2018 to 2020. The genotyping-by-sequencing (GBS) data of the alfalfa populations and environmental data were used for genotype-environment association (GEA). Both STRUCTURE and UPGMA based on 19,853 SNPs showed that the 14 alfalfa populations from long-term grazing sites had varying levels of parentages from alfalfa sub-species Medicago sativa and M. falcata. The linear regression of STRUCTURE membership probability on phenotypic data indicated genetic variations of forage dry matter yield, spring vigor and plant height were low, but genetic variations of regrowth, fall plant height, days to flower and crude protein were still high for the 14 alfalfa populations from long-term grazing sites. The GEA identified 31 SNPs associated with 13 candidate genes that were mainly associated with six environmental factors of. Candidate genes underlying environmental factors were associated with a variety of proteins, which were involved in plant responses to abiotic stresses, i.e., drought, cold and salinity-alkali stresses.
Funder
Saskatchewan Ministry of Agriculture
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献