Quantification of play behaviour in calves using automated ultra-wideband location data and its association with age, weaning and health status

Author:

Vázquez-Diosdado J. A.,Doidge C.,Bushby E. V.,Occhiuto F.,Kaler J.

Abstract

AbstractPlay behaviour can act as an indicator of positive animal welfare. Previous attempts to predict play behaviour in farmed calves are limited because of the classification methods used, which lead to overestimation, and the short time periods that calves are observed. The study aimed to automatically classify and quantify play behaviour in farmed calves using location data from ultra-wide band sensors and to investigate factors associated with play behaviour. Location data were collected from 46 calves in three cohorts for a period of 18 weeks. Behavioural observations from video footage were merged with location data to obtain a total of 101.36 h of labelled data. An AdaBoost ensemble learning algorithm was implemented to classify play behaviour. To account for overestimation, generally seen in low-prevalence behaviours, an adjusted count technique was applied to the outputs of the classifier. Two generalized linear mixed models were fitted to investigate factors (e.g. age, health) associated with duration of play and number of play instances per day. Our algorithm identified play behaviour with > 94% accuracy when evaluated on the test set with no animals used for training, and 16% overestimation, which was computed based on the predicted number of samples of play versus the number of samples labelled as play on the test set. The instances and duration of play behaviour per day significantly decreased with age and sickness, whilst play behaviour significantly increased during and after weaning. The instances of play also significantly decreased as mean temperature increased. We suggest that the quantification method that we used could be used to detect and monitor other low prevalence behaviours (e.g. social grooming) from location data, including indicators of positive welfare.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3