Efficient Magnetic Vortex Acceleration by femtosecond laser interaction with long living optically shaped gas targets in the near critical density plasma regime

Author:

Tazes I.,Passalidis S.,Kaselouris E.,Mancelli D.,Karvounis C.,Skoulakis A.,Fitilis I.,Bakarezos M.,Papadogiannis N. A.,Dimitriou V.,Tatarakis M.ORCID

Abstract

AbstractWe introduce a novel, gaseous target optical shaping laser set-up, capable to generate short scale length, near-critical target profiles via generated colliding blast waves. These profiles are capable to maintain their compressed density for several nanoseconds, being therefore ideal for laser-plasma particle acceleration experiments in the near critical density plasma regime. Our proposed method overcomes the laser-target synchronization limitations and delivers energetic protons, during the temporal evolution of the optically shaped profile, in a time window of approximately 2.5 ns. The optical shaping of the gas-jet profiles is optimised by MagnetoHydroDynamic simulations. 3D Particle-In-Cell models, adopting the spatiotemporal profile, simulate the 45 TW femtosecond laser plasma interaction to demonstrate the feasibility of the proposed proton acceleration set-up. The optical shaping of gas-jets is performed by multiple, nanosecond laser pulse generated blastwaves. This process results in steep gradient, short scale length plasma profiles, in the near critical density regime allowing operation at high repetition rates. Notably, the Magnetic Vortex Acceleration mechanism exhibits high efficiency in coupling the laser energy into the plasma in the optically shaped targets, resulting to collimated proton beams of energies up to 14 MeV.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3