Protein feature engineering framework for AMPylation site prediction

Author:

Prabhu Hardik,Bhosale Hrushikesh,Sane Aamod,Dhadwal Renu,Ramakrishnan Vigneshwar,Valadi Jayaraman

Abstract

AbstractAMPylation is a biologically significant yet understudied post-translational modification where an adenosine monophosphate (AMP) group is added to Tyrosine and Threonine residues primarily. While recent work has illuminated the prevalence and functional impacts of AMPylation, experimental identification of AMPylation sites remains challenging. Computational prediction techniques provide a faster alternative approach. The predictive performance of machine learning models is highly dependent on the features used to represent the raw amino acid sequences. In this work, we introduce a novel feature extraction pipeline to encode the key properties relevant to AMPylation site prediction. We utilize a recently published dataset of curated AMPylation sites to develop our feature generation framework. We demonstrate the utility of our extracted features by training various machine learning classifiers, on various numerical representations of the raw sequences extracted with the help of our framework. Tenfold cross-validation is used to evaluate the model’s capability to distinguish between AMPylated and non-AMPylated sites. The top-performing set of features extracted achieved MCC score of 0.58, Accuracy of 0.8, AUC-ROC of 0.85 and F1 score of 0.73. Further, we elucidate the behaviour of the model on the set of features consisting of monogram and bigram counts for various representations using SHapley Additive exPlanations.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3