A pareto strategy based on multi-objective optimal integration of distributed generation and compensation devices regarding weather and load fluctuations

Author:

Fettah Khaled,Guia Talal,Salhi Ahmed,Betka Abir,Saidi Abdelaziz Salah,Teguar Madjid,Ali Enas,Bajaj Mohit,Mohammadi Shir Ahmad Dost,Ghoneim Sherif S. M.

Abstract

AbstractIn this study, we present a comprehensive optimization framework employing the Multi-Objective Multi-Verse Optimization (MOMVO) algorithm for the optimal integration of Distributed Generations (DGs) and Capacitor Banks (CBs) into electrical distribution networks. Designed with the dual objectives of minimizing energy losses and voltage deviations, this framework significantly enhances the operational efficiency and reliability of the network. Rigorous simulations on the standard IEEE 33-bus and IEEE 69-bus test systems underscore the effectiveness of the MOMVO algorithm, demonstrating up to a 47% reduction in energy losses and up to a 55% improvement in voltage stability. Comparative analysis highlights MOMVO's superiority in terms of convergence speed and solution quality over leading algorithms such as the Multi-Objective Jellyfish Search (MOJS), Multi-Objective Flower Pollination Algorithm (MOFPA), and Multi-Objective Lichtenberg Algorithm (MOLA). The efficacy of the study is particularly evident in the identification of the best compromise solutions using MOMVO. For the IEEE 33 network, the application of MOMVO led to a significant 47.58% reduction in daily energy loss and enhanced voltage profile stability from 0.89 to 0.94 pu. Additionally, it realized a 36.97% decrease in the annual cost of energy losses, highlighting substantial economic benefits. For the larger IEEE 69 network, MOMVO achieved a remarkable 50.15% reduction in energy loss and improved voltage profiles from 0.89 to 0.93 pu, accompanied by a 47.59% reduction in the annual cost of energy losses. These results not only confirm the robustness of the MOMVO algorithm in optimizing technical and economic efficiencies but also underline the potential of advanced optimization techniques in facilitating the sustainable integration of renewable energy resources into existing power infrastructures. This research significantly contributes to the field of electrical distribution network optimization, paving the way for future advancements in renewable energy integration and optimization techniques for enhanced system efficiency, reliability, and sustainability.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3