Activation of the rostral nucleus accumbens shell by optogenetics induces cataplexy-like behavior in orexin neuron-ablated mice

Author:

Kawashima Shigetaka,Lou Fan,Kusumoto-Yoshida Ikue,Hao Liying,Kuwaki Tomoyuki

Abstract

AbstractCataplexy is one of the symptoms of type 1 narcolepsy, characterized by a sudden loss of muscle tone. It can be seen as a behavioral index of salience, predominantly positive emotion, since it is triggered by laughter in humans and palatable foods in mice. In our previous study using chemogenetic techniques in narcoleptic mice (orexin neuron-ablated mice), we found that the rostral nucleus accumbens (NAc) shell is needed for chocolate-induced cataplexy. In this study, we investigated whether a short-lasting stimulation/inhibition of the NAc by optogenetics led to a similar result. Photo-illumination to the NAc in the channel rhodopsin-expressing mice showed a higher incidence (34.9 ± 5.1%) of cataplexy-like behavior than the control mice (17.8 ± 3.1%, P = 0.0056). Meanwhile, inactivation with archaerhodopsin did not affect incidence. The episode duration of cataplexy-like behavior was not affected by activation or inactivation. Immunohistochemical analysis revealed that photo-illumination activated channel rhodopsin-expressing NAc shell neurons. Thus, activation of the NAc, whether transient (light stimulation) or longer-lasting (chemical stimulation in our previous study), facilitates cataplexy-like behaviors and contributes to the induction but not maintenance in them. On the other hand, our study's result from optogenetic inhibition of the NAc (no effect) was different from chemogenetic inhibition (reduction of cataplexy-like behavior) in our previous study. We propose that the initiation of cataplexy-like behavior is facilitated by activation of the NAc, while NAc-independent mechanisms determine the termination of the behavior.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3