Theoretical insights on helix repacking as the origin of P-glycoprotein promiscuity

Author:

Bonito Cátia A.ORCID,Ferreira Ricardo J.,Ferreira Maria-José. U.,Gillet Jean-Pierre,Cordeiro M. Natália D. S.ORCID,dos Santos Daniel J. V. A.

Abstract

AbstractP-glycoprotein (P-gp, ABCB1) overexpression is, currently, one of the most important multidrug resistance (MDR) mechanisms in tumor cells. Thus, modulating drug efflux by P-gp has become one of the most promising approaches to overcome MDR in cancer. Yet, more insights on the molecular basis of drug specificity and efflux-related signal transmission mechanism between the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) are needed to develop molecules with higher selectivity and efficacy. Starting from a murine P-gp crystallographic structure at the inward-facing conformation (PDB ID: 4Q9H), we evaluated the structural quality of the herein generated human P-gp homology model. This initial human P-gp model, in the presence of the “linker” and inserted in a suitable lipid bilayer, was refined through molecular dynamics simulations and thoroughly validated. The best human P-gp model was further used to study the effect of four single-point mutations located at the TMDs, experimentally related with changes in substrate specificity and drug-stimulated ATPase activity. Remarkably, each P-gp mutation is able to induce transmembrane α-helices (TMHs) repacking, affecting the drug-binding pocket volume and the drug-binding sites properties (e.g. volume, shape and polarity) finally compromising drug binding at the substrate binding sites. Furthermore, intracellular coupling helices (ICH) also play an important role since changes in the TMHs rearrangement are shown to have an impact in residue interactions at the ICH-NBD interfaces, suggesting that identified TMHs repacking affect TMD-NBD contacts and interfere with signal transmission from the TMDs to the NBDs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3