SO2 and HCHO over the major cities of Kazakhstan from 2005 to 2016: influence of political, economic and industrial changes

Author:

Darynova Zhuldyz,Amouei Torkmahalleh Mehdi,Abdrakhmanov Talgat,Sabyrzhan Serik,Sagynov Sultan,Hopke Philip K.,Kushta Jonilda

Abstract

AbstractSatellite observations of the Ozone Monitoring Instrument (OMI) for tropospheric sulfur dioxide (SO2) and formaldehyde (HCHO) column mass densities (CMD) are analyzed for the period 2005–2016 over the atmosphere of Kazakhstan. Regarding SO2 the major hot spots relate to regions with high population and large industrial facilities. Such an example is the city of Ekibastuz that hosts the biggest thermal power plants in the country and exhibits the higher SO2 CMD at national level. The annual average CMD in Ekibastuz reaches 2.5 × 10−5 kg/m2, whereas for the rest of the country respective values are 6 times lower. Other hotspots, mostly urban conglomerates such as Almaty and Nur-Sultan, experience high CMDs of SO2 in particular years, such as 2008. One of the main reasons for this behavior is the financial crisis of 2008, forcing the application of alternate heating sources based on cheap low-quality coal. Regarding HCHO, an oxygenated Volatile Organic Compound (VOC), the main hot spot is noticed over the city Atyrau, the oil capital of the country where two massive oil fields are located. The highest HCHO CMD (9 × 1015 molecules/cm2) appears in the summertime due to secondary production as a result of the photo-oxidation of VOCs emitted by industrial sectors, oil refinery plants and vehicles. Strongly elevated HCHO amounts are also observed in Nur-Sultan in 2012 that could be due to the residential coal combustion and vehicle exhaust under poor winter dispersion conditions. Significant reductions in HCHO observed between 2012 and 2015 can be attributed to two significant measures implemented in the country in 2013 that aimed at the improvement of air quality: the introduction of the emission trading system (ETS) for greenhouse gases and Euro-4 standards for new vehicles entering the national vehicle fleet.

Funder

Nazarbayev University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3