Immunotherapeutic effects of recombinant colorectal cancer antigen produced in tomato fruits

Author:

Park Se Hee,Ji Kon-Young,Park Seo Young,Kim Hyun Min,Ma Sang Hoon,Do Ju Hui,Kang Hyuno,Kang Hyung Sik,Oh Doo-Byoung,Shim Jae Sung,Joung Young Hee

Abstract

AbstractThe production of pharmacological vaccines in plants has been an important goal in the field of plant biotechnology. GA733-2, the protein that is also known as colorectal carcinoma (CRC)-associated antigen, is a strong candidate to produce a colorectal cancer vaccine. Tomato is the one of the major targets for production of an edible vaccine, as tomato is a fruit consumed in fresh form. It also contains high content of vitamins that aid activation of immune response. In order to develop an edible colorectal cancer vaccine, the transgene rGA733-Fc that encodes a fusion protein of GA733-2, the fragment crystallizable (Fc) domain, and the ER retention motif (rGA733-Fc) was introduced into tomato plants (Solanumlycopersicum cv. Micro-Tom). The transgenic plants producing rGA733-Fc (rGA733-FcOX) protein were screened based on stable integration of transgene expression cassette and expression level of rGA733-Fc protein. Further glycosylation pattern analysis revealed that plant derived rGA733-Fc protein contains an oligomannose glycan structure, which is a typical glycosylation pattern found on ER-processing proteins. The red fruits of rGA733-FcOX transgenic tomato plants containing approximately 270 ng/g FW of rGA733-Fc protein were orally administered to C57BL/6 mice. Oral administration of tomato fruits of the rGA733-Fc expressing transgenic plants delayed colorectal cancer growth and stimulated immune responses compared to oral administration of tomato fruits of the h-Fc expressing transgenic plants in the C57BL/6J mice. This is the first study showing the possibility of producing an edible colorectal cancer vaccine using tomato plants. This research would be helpful for development of plant-derived cancer edible vaccines.

Funder

New breeding technologies development Program, Rural Development Administration, Korea

Next-Generation BioGreen21 Program, Next-Generation BioGreen21 Program, Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3