Switchable Multi-Color Solution-Processed QD-laser

Author:

Matloub Samiye,Amini Pegah,Rostami Ali

Abstract

AbstractIn this paper, for the first time, the switchable two-color quantum dot laser has been realized considering solution process technology, which has both simultaneous and lonely lasing capability exploiting selective energy contacts. Furthermore, both channels can be modulated independently, which is a significant feature in high-speed data transmission. To this end, utilizing superimposed quantum dots with various radii in the active layer provides the different emission wavelengths. In order to achieve the different sizes of QDs, solution process technology has been used as a cost-effectiveness and fabrication ease method. Moreover, at the introduced structure to accomplish the idea, the quantum wells are used as separate selective energy contacts to control the lasing channels at the desired wavelength. It makes the prominent device have simultaneous lasing at different emission wavelengths or be able to lase just at one wavelength. The performance of the proposed device has been modeled based on developed rate equation by assuming inhomogeneous broadening of energy levels as a consequence of the size distribution of quantum dots and considering tunnel injection of carriers into the quantum dots via selective energy contacts. Based on simulation results, the simultaneous lasing in both or at one of two wavelengths 1.31  μm and 1.55  μm has been realized by the superimposition of two different sizes of InGaAs quantum dots in a single cavity and accomplishment of selective energy contacts. Besides, controlling the quantum dot coverage leads to managing the output power and modulation response at the desired wavelengths. By offering this idea, one more step is actually taken to approach the switchable QD-laser by the simple solution process method.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3