Measurement of focal light spot at single-photon level with silicon photomultipliers

Author:

Yang Yaxian,Zhang Guoqing,Zhang Chen,Cao Xinyue,Liu Lina,Li Lianbi,Han Xiaoxiang

Abstract

AbstractFocal spot (light spot) at single-photon level have important applications in many fields. This report demonstrates a method for measuring focal spot size at the single-photon level indirectly. This method utilizes Silicon Photomultiplier (SiPM) as the single-photon sensitive detectors, combined with a nano-positioning stage. The approach involves one- or two-dimensional space scanning and a deconvolution operation, which enable evaluations of the size and spatial distribution of the focal spot formed by a single-photon-level pulsed laser. The results indicate that the average full width at half maximum of the focal spot is about 0.657 μm, which is close to the nominal resolution of the objective lens of the microscope (i.e. 0.42 μm). The proposed method has two key advantages: (1) it can measure focal spot at the single-photon level, and (2) the focal spot can easily be aligned with the detector because the array area of the Geiger mode avalanche photodiode (Gm-APD) cells in SiPM is usually on the order of square millimeter, and there is no need to put an optical slit, knife edge, or pinhole in front of the detector. The method described herein is applicable in weak focal spot detection related fields.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Key Research and Development Program of Shaanxi Province

Science and Technology Plan Project of Xi'an

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Precision Micro-Displacement Measurement Based on Self-Calibration and Optoelectronic Oscillators;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

2. Author Correction: Measurement of focal light spot at single-photon level with silicon photomultipliers;Scientific Reports;2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3