Boosting piezoelectric properties of PVDF nanofibers via embedded graphene oxide nanosheets

Author:

Salama Mahmoud,Hamed Aya,Noman Sara,Magdy Germein,Shehata Nader,Kandas Ishac

Abstract

AbstractTremendous research efforts have been directed toward developing polymer-based piezoelectric nanogenerators (PENG) in a promising step to investigate self-charging powered systems (SCPSs) and consequently, support the need for flexible, intelligent, and ultra-compact wearable electronic devices. In our work, electrospun polyvinylidene fluoride (PVDF) nanofiber mats were investigated while graphene oxide (GO) was added with different concentrations (from 0 to 3 wt.%). Sonication treatment was introduced for 5 min to GO nanosheets before combined PVDF solution. A comprehensive study was conducted to examine the GO incremental effect. Microstructural and mechanical properties were examined using a scanning electron microscope (SEM) and a texture analyzer. Moreover, piezoelectric properties were assessed via various tests including impulse response, frequency effect, d33 coefficient, charging and discharging analysis, and sawyer tower circuit. Experimental results indicate that incorporation of GO nanosheets enhances piezoelectric properties for all concentrations, which was linked to the increase in β phase inside the nanofibers, which has a significant potential of enhancing nanogenerator performance. PVDF-GO 1.5 wt.% shows a notably higher enhancing effect where the electroactive β-phase and γ-phase are recorded to be boosted to ~ 68.13%, as well as piezoelectric coefficient (d33 ~ 55.57 pC/N). Furthermore, increasing impact force encouraged the output voltage. Also noted that the delivered open circuit voltage is ~ 3671 V/g and the power density is ~ 150 µw/cm2. It was observed that GO of concentration 1.5 wt.% recorded a conversion efficiency of ~ 74.73%. All results are in line, showing better performance for PVDF-GO 1.5 wt.% for almost all concentrations.

Funder

Science and Technology Development Fund

Alexandria University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3