Transdiagnostic clustering and network analysis for questionnaire-based symptom profiling and drug recommendation in the UK Biobank and a Korean cohort

Author:

Lee Eunjin,Lee Dongbin,Baek Ji Hyun,Kim So Yeon,Park Woong-yang

Abstract

AbstractClinical decision support systems (CDSSs) play a critical role in enhancing the efficiency of mental health care delivery and promoting patient engagement. Transdiagnostic approaches that utilize raw psychological and biological data enable personalized patient profiling and treatment. This study introduces a CDSS incorporating symptom profiling and drug recommendation for mental health care. Among the UK Biobank cohort, we analyzed 157,348 participants for symptom profiling and 14,358 participants with a drug prescription history for drug recommendation. Among the 1307 patients in the Samsung Medical Center cohort, 842 were eligible for analysis. Symptom profiling utilized demographic and questionnaire data, employing conventional clustering and community detection methods. Identified clusters were explored using diagnostic mapping, feature importance, and scoring. For drug recommendation, we employed cluster- and network-based approaches. The analysis identified nine clusters using k-means clustering and ten clusters with the Louvain method. Clusters were annotated for distinct features related to depression, anxiety, psychosis, drug addiction, and self-harm. For drug recommendation, drug prescription probabilities were retrieved for each cluster. A recommended list of drugs, including antidepressants, antipsychotics, mood stabilizers, and sedative–hypnotics, was provided to individual patients. This CDSS holds promise for efficient personalized mental health care and requires further validation and refinement with larger datasets, serving as a valuable tool for mental healthcare providers.

Funder

Ministry of Health & Welfare, Republic of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3