Uptake routes of microplastics in fishes: practical and theoretical approaches to test existing theories

Author:

Roch S.,Friedrich C.,Brinker A.

Abstract

AbstractMicroplastics are frequently detected in the gastrointestinal tracts of aquatic organisms worldwide. A number of active and passive pathways have been suggested for fish, including the confusion of microplastic particles with prey, accidental uptake while foraging and transfer through the food chain, but a holistic understanding of influencing factors is still lacking. The aim of the study was to investigate frequently suggested theories and identify relevant biotic factors, as well as certain plastic properties, affecting microplastic intake in fish. Four species of freshwater fish, each representing a different combination of foraging style (visual/chemosensory) and domestic status (wild/farmed) were exposed to different realistic plastic concentrations and polymer types with and without the provision of genuine food. As most previous investigations of microplastic uptake routes consider only particles large enough to be perceptible to fish, the potential for accidental intake via drinking water has been somewhat neglected. This route is evaluated in the current study using a model approach. The results show that visually oriented fish forage actively on microplastic particles that optically resemble their usual food, while fish with a predominantly chemosensory foraging style are more able to discriminate inedible food items. Even so, the accidental uptake of microplastics while foraging is shown to be relevant pathway, occurring frequently in both visual and chemosensory foragers alike. Several factors were shown to increase plastic uptake, including microplastic concentration in the water, foraging behaviour promoted by availability of genuine food, and fish size. Although both wild and farmed fish ingested microplastic particles, cultured fish showed less discernment in terms of colour and were more likely to forage actively on microplastics when no food was available. Drinking has been identified as a possible source of microplastic intake specifically for large marine fish species. Particles smaller than <5 µm can pass the gastrointestinal tract wall and bioaccumulation could arise when uptake exceeds release or when particles are assimilated in tissues or organs. The effects of accumulation may be significant, especially in long-living species, with implications for food web transfer and fish as food items.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3