Alkyl deoxyglycoside-polymyxin combinations against critical priority carbapenem-resistant gram-negative bacteria

Author:

de Matos Ana M.,Calado Patrícia,Miranda Mónica,Almeida Rita,Rauter Amélia P.,Oliveira M. Conceição,Manageiro Vera,Caniça Manuela

Abstract

AbstractThe escalating antimicrobial resistance crisis urges the development of new antibacterial treatments with innovative mechanisms of action, particularly against the critical priority carbapenem-resistant Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA) and Enterobacteriaceae (CRE). Membrane-disrupting dodecyl deoxyglycosides have been reported for their interesting phosphatidylethanolamine-associated bactericidal activity against Gram-positive strains; however, their inability to penetrate the Gram-negative outer membrane (OM) renders them useless against the most challenging pathogens. Aiming to repurpose alkyl deoxyglycosides against Gram-negative bacteria, this study investigates the antimicrobial effects of five reference compounds with different deoxygenation patterns or anomeric configurations in combination with polymyxins as adjuvants for enhanced OM permeability. The generation of the lead 4,6-dideoxy scaffold was optimized through a simultaneous dideoxygenation step and applied to the synthesis of a novel alkyl 4,6-dideoxy C-glycoside 5, herein reported for the first time. When combined with subtherapeutic colistin concentrations, most glycosides demonstrated potent antimicrobial activity against several multidrug-resistant clinical isolates of CRAB, CRE and CRPA exhibiting distinct carbapenem resistance mechanisms, together with acceptable cytotoxicity against human HEK-293T and Caco-2 cells. The novel 4,6-dideoxy C-glycoside 5 emerged as the most promising prototype structure for further development (MIC 3.1 μg/mL when combined with colistin 0.5 μg/mL against CRPA or 0.25 μg/mL against several CRE and CRAB strains), highlighting the potential of C-glycosylation for an improved bioactive profile. This study is the first to show the potential of IM-targeting carbohydrate-based compounds for the treatment of infections caused by MDR Gram-negative pathogens of clinical importance.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3