Digital dynamic discrimination of primary colorectal cancer using systemic indocyanine green with near-infrared endoscopy

Author:

Dalli Jeffrey,Loughman Eamon,Hardy Niall,Sarkar Anwesha,Khan Mohammad Faraz,Khokhar Haseeb A.,Huxel Paul,O’Shea Donal F.,Cahill Ronan A.

Abstract

AbstractAs indocyanine green (ICG) with near-infrared (NIR) endoscopy enhances real-time intraoperative tissue microperfusion appreciation, it may also dynamically reveal neoplasia distinctively from normal tissue especially with video software fluorescence analysis. Colorectal tumours of patients were imaged mucosally following ICG administration (0.25 mg/kg i.v.) using an endo-laparoscopic NIR system (PINPOINT Endoscopic Fluorescence System, Stryker) including immediate, continuous in situ visualization of rectal lesions transanally for up to 20 min. Spot and dynamic temporal fluorescence intensities (FI) were quantified using ImageJ (including videos at one frame/second, fps) and by a bespoke MATLAB® application that provided digitalized video tracking and signal logging at 30fps (Fluorescence Tracker App downloadable via MATLAB® file exchange). Statistical analysis of FI-time plots compared tumours (benign and malignant) against control during FI curve rise, peak and decline from apex. Early kinetic FI signal measurement delineated discriminative temporal signatures from tumours (n = 20, 9 cancers) offering rich data for analysis versus delayed spot measurement (n = 10 cancers). Malignant lesion dynamic curves peaked significantly later with a shallower gradient than normal tissue while benign lesions showed significantly greater and faster intensity drop from apex versus cancer. Automated tracker quantification efficiently expanded manual results and provided algorithmic KNN clustering. Photobleaching appeared clinically irrelevant. Analysis of a continuous stream of intraoperatively acquired early ICG fluorescence data can act as an in situ tumour-identifier with greater detail than later snapshot observation alone. Software quantification of such kinetic signatures may distinguish invasive from non-invasive neoplasia with potential for real-time in silico diagnosis.

Funder

Disruptive Technologies Innovation Fund, government of the the Republic of Ireland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3