1H-NMR metabolomics analysis identifies hypoxanthine as a novel metastasis-associated metabolite in breast cancer

Author:

Shakartalla Sarra B.,Ashmawy Naglaa S.,Semreen Mohammad H.,Fayed Bahgat,Al Shareef Zainab M.,Jayakumar Manju N.,Ibrahim Saleh,Rahmani Mohamed,Hamdy Rania,Soliman Sameh S. M.

Abstract

AbstractBreast cancer is one of the leading causes of death in females, mainly because of metastasis. Oncometabolites, produced via metabolic reprogramming, can influence metastatic signaling cascades. Accordingly, and based on our previous results, we propose that metabolites from highly metastatic breast cancer cells behave differently from less-metastatic cells and may play a significant role in metastasis. For instance, we aim to identify these metabolites and their role in breast cancer metastasis. Less metastatic cells (MCF-7) were treated with metabolites secreted from highly metastatic cells (MDA-MB-231) and the gene expression of three epithelial-to-mesenchymal transition (EMT) markers including E-cadherin, N-cadherin and vimentin were examined. Some metabolites secreted from MDA-MB-231 cells significantly induced EMT activity. Specifically, hypoxanthine demonstrated a significant EMT effect and increased the migration and invasion effects of MCF-7 cells through a hypoxia-associated mechanism. Hypoxanthine exhibited pro-angiogenic effects via increasing the VEGF and PDGF gene expression and affected lipid metabolism by increasing the gene expression of PCSK-9. Notably, knockdown of purine nucleoside phosphorylase, a gene encoding for an important enzyme in the biosynthesis of hypoxanthine, and inhibition of hypoxanthine uptake caused a significant decrease in hypoxanthine-associated EMT effects. Collectively for the first time, hypoxanthine was identified as a novel metastasis-associated metabolite in breast cancer cells and represents a promising target for diagnosis and therapy.

Funder

University of Sharjah

Al Jalila Foundation-Research Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3