Laser-assisted see-through technology for locating sound sources inside a structure

Author:

Wu Sean F.,Lu Yazhong,Ernest Cameron,Zhao Yang,Chen Lingguang

Abstract

AbstractA laser-assisted see-through technology is developed to locate sound sources inside a structure and to analyze the interior sound field. Six lasers were employed to measure simultaneously the normal velocities on the exterior surface. These input data were used to locate sound sources inside a solid structure using a passive sonic detection and ranging algorithm, and then to reconstruct the interior sound field using the Helmholtz equation least squares method, and finally to observe the changes of the interior sound field over time through computer tomography. If signals are time invariant, all these can be accomplished with two lasers, one being fixed and another moving around to measure the normal surface velocity sequentially to establish transfer function with respect to the stationary laser. Once the transfer functions are established, they can be multiplied by any segment of time-domain signals measured by the fixed laser to acquire multiple normal surface velocities, as if they were measured simultaneously. This laser-assisted see-through technology has been validated experimentally and employed to observe the aerodynamically-induced sound field generated by a blower inside a projector. This development is important as it signifies a significant advancement in sound source localization, and opens the door to a class of applications presently unattainable.

Publisher

Springer Science and Business Media LLC

Reference80 articles.

1. Richards, M. A., Scheer, J. A. & Holm, W. A. Principles of Modern Rader, Basic Principles Vol. I (Scitech Publishing, 2010).

2. Melvin, W. L. & Scheer, J. A. Principles of Modern Rader, Advanced Techniques Vol. II (Scitech Publishing, 2013).

3. Rosenberg, L. & Watts, S. Radar Sea Clutter: Modeling and target detection (Scitech Publishing, 2022).

4. Urich, R. J. Principles of Underwater Sound 3rd edn. (Peninsula Publishing, 1983).

5. Hackmann, W. D. Seek & Strike: Sonar, Anti-submarine Warfare and the Royal Navy 1914–54 (Her Majesty’s Stationary Office, 1984).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3