Automated evaluation of retinal pigment epithelium disease area in eyes with age-related macular degeneration

Author:

Motozawa Naohiro,Miura Takuya,Ochiai Koji,Yamamoto Midori,Horinouchi Takaaki,Tsuzuki Taku,Kanda Genki N.,Ozawa Yosuke,Tsujikawa Akitaka,Takahashi Koichi,Takahashi Masayo,Kurimoto Yasuo,Maeda Tadao,Mandai Michiko

Abstract

AbstractThe retinal pigment epithelium (RPE) is essential for the survival and function of retinal photoreceptor cells. RPE dysfunction causes various retinal diseases including age-related macular degeneration (AMD). Clinical studies on ES/iPS cell-derived RPE transplantation for RPE dysfunction-triggered diseases are currently underway. Quantification of the diseased RPE area is important to evaluate disease progression or the therapeutic effect of RPE transplantation. However, there are no standard protocols. To address this issue, we developed a 2-step software that enables objective and efficient quantification of RPE-disease area changes by analyzing the early-phase hyperfluorescent area in fluorescein angiography (FA) images. We extracted the Abnormal region. This extraction was based on deep learning-based discrimination. We scored the binarized extracted area using an automated program. Our program’s performance for the same eye from the serial image captures was within 3.1 ± 7.8% error. In progressive AMD, the trend was consistent with human assessment, even when FA images from two different visits were compared. This method was applicable to quantifying RPE-disease area changes over time, evaluating iPSC-RPE transplantation images, and a disease other than AMD. Our program may contribute to the assessment of the clinical course of RPE-disease areas in routine clinics and reduce the workload of researchers.

Funder

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3